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Abstract. We have investigated the ground state and the doubly excited 1,3P◦ resonance states of plasma-
embedded Li+ ion. The plasma effect is taken care of by using a screened Coulomb potential obtained from
the Debye model. A correlated wave function has been used to represent the correlation effect between the
charged particles. The ground state of Li+ in plasmas for different screening parameters has been estimated
in the framework of Rayleigh-Ritz variational principle. In addition, a total of 18 resonances (9 each for
1P◦ and 3P◦ states) below the n = 2 Li+ thresholds has been estimated by calculating the density of states
using the stabilization method. For each spin state, this includes four members in the 2snp+ (2 ≤ n ≤ 5)
series, three members in the 2snp− (3 ≤ n ≤ 5) series, and two members in the 2pnd (n = 3, 4) series.
The resonance energies and widths for various Debye parameters ranging from infinity to a small value
for these 1,3P◦ resonance states along with the ground state energies of Li+ and the Li2+ (1S), Li2+ (2S)
threshold energies are reported. Furthermore, the wavelengths for the photo-absorption of lithium ion from
its ground state to such 1P◦ resonance states for different Debye lengths are also reported.

PACS. 52.20.Fs Electron collisions – 95.30.Dr Atomic processes and interactions – 34.80.Bm Elastic
scattering of electrons by atoms and molecules – 95.75.Fg Spectroscopy and spectrophotometry

1 Introduction

With the recent advancement for laser plasmas in laser
fusion laboratories [1] and with the recent experimental
development on the doubly excited resonances in photo-
ionization spectrum of Li+ using the photon-ion merged-
beam endstation at the Advanced Light Source [2], it is
of interest to investigate the bound states and resonance
states of Li+ under the influence of external environments
produced by the charge-neutral background such as that of
a plasma. The plasma effect can be represented by differ-
ent models of screened Coulomb potentials. In hot-dense
and low-density warm plasma, the effect of plasma on the
localized two-particle interaction can be represented by
a screened Coulomb potential obtained from the Debye
shielding approach in which the screening parameter µ
is proportional to

√
n/T , n being the plasma density

and T its temperature, and with µ = 1/D, D being the
Debye lengths. Recently, several studies have been per-
formed on the bound states ([3–11], references therein),
the resonance states [9,12,13] and other structural prop-
erties ([4,7,11,14] and references therein) of two-electron
atoms/ions immersed in plasmas by considering the Debye
screening concept of plasma modeling. The importance of
Debye screening in plasma spectroscopy, in plasma diag-
nostics, in astrophysical applications and in calculating
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partition function in thermodynamics and several other
applications has been discussed in the literature ([3–17],
references therein).

In the present work, we report results for the ground
state and the 2ln′l′ (2 ≤ n′ ≤ 5) 1,3P◦ resonances of Li+
in plasmas below the Li2+(2S) threshold, along with the
wavelengths of the absorption resonances in the Li+ for
various Debye lengths using 600-term of a highly corre-
lated exponential basis function. Interaction between the
charged particles is taken care of by using the Debye
model. We use the stabilization method [18–20] to extract
resonance energies and widths. The convergence of the
calculations is examined with increasing number of terms
and different sets of non-linear variational parameters in
the basis expansion. To the best of our knowledge, the in-
vestigation on the 1,3P◦ resonances of Li+ in plasmas has
not been reported in the literature until now. The ground
state energies obtained from our calculations for different
screening parameters are lower than the reported results
of Saha et al. [6]. The atomic unit (a.u.) has been used
throughout the present work.

2 Calculations

The non-relativistic Hamiltonian describing the Li+ ion
embedded in Debye plasmas characterized by a parameter
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D, called the Debye length, is given by

H = −1
2
∇2

1 −
1
2
∇2

2 − 3
[
exp(−r1/D)

r1
+

exp(−r2/D)
r2

]

+
exp(−r12/D)

r12
, (1)

where r1 and r2 are the radial coordinates of the two elec-
trons and r12 is their relative distance. A set of plasma
condition can be simulated for different choice of µ, as the
Debye screening parameter µ is a function n and T. Also,
it can be observed from the perturbation theory that the
screening is repulsive perturbation for which all the iso-
lated energy levels displaced upwards and ultimately in
the continuum due to repulsive perturbation.

For the S, P states of Li+ ion, we have considered the
wave function

Ψ = (1 + SpnÔ21)
N∑

i=1

Cir
L
1 PL(cos θ1)

× exp [(−αir1 − βir2 − γir12)ω] (2)

where αi, βi, γi are the non-linear variation parameters, Ci

(i = 1, ..., N) are the linear expansion coefficients, L = 0
for S-states and L = 1 for P-states, Spn = 1 denotes sin-
glet states and Spn = −1 indicates triplet states, N is
the number basis terms, and ω is a scaling constant to be
discussed later in the text. The operator Ô21 is the permu-
tation of the two-identical particles. The non-linear vari-
ational parameters αi, βi and γi are chosen from a quasi-
random process as proposed by Frolov [21] and as used
in our earlier work [9,11,12,14]. According to the multi-
box strategy [21], the parameters αi, βi and γi are chosen
from the three positive interval [A(k)

1 , A
(k)
2 ], [B(k)

2 , B
(k)
2 ]

and [C(k)
1 , C

(k)
2 ]; where, k = mod(i, 3) + 1, 1 ≤ i ≤ N ,

αi = η
(k)
1 [〈〈(i(i + 1)

√
2)/2〉〉(A(k)

2 − A
(k)
1 ) + A

(k)
1 ]

βi = η
(k)
2 [〈〈(i(i + 1)

√
3)/2〉〉(B(k)

2 − B
(k)
1 ) + B

(k)
1 ]

γi = η
(k)
3 [〈〈(i(i + 1)

√
5)/2〉〉(C(k)

2 − C
(k)
1 ) + C

(k)
1 ], (3)

where the symbol 〈〈. . . 〉〉 designates the fractional part of
a real number. The positive scaling factors η

(k)
1 , η

(k)
2 and

η
(k)
3 are set to have values equal to 1 in the first stage, and

in the second stage they will be varied. But for the present
investigation, it has been observed that a better optimiza-
tion can be obtained by selecting A

(k)
1 = 0, A

(k)
2 = a;

B
(k)
1 = 0, B

(k)
2 = b; C

(k)
1 = 0, C

(k)
2 = c. For the ground

state calculation, the optimum values for a and b are 4.1
and 5.2 respectively for all Debye lengths. The optimum
value of c is the same for Debye lengths up to D = 0.6
and the value is 4.7. The optimized values of c are 1.2,
0.3, 0.3 and 0.2 for D = 0.5, 0.4, 0.3, and 0.29, respec-
tively. For P-state calculations, the optimized values for
a, b and c are 3.1, 4.3 and 3.3 respectively for all Debye
lengths. The small variation on the non-linear parameters
in the neighborhood of the optimized value does not affect
significantly on the best energies.

Table 1. Ground state energies (in a.u.) for plasma-embedded
Li+ and Li++.

D Li+(1s2 1S) Li2+(1S)

∞ −7.2799134126 −4.5000000000
−7.2799134127a (exact)

100 −7.2300418387 −4.4700748341
−7.2299475b

50 −7.1804259670 −4.4402986787
20 −7.0330957201 −4.3518546295
10 −6.7925067101 −4.2073405204

−6.7924170b

5 −6.3292677550 −3.9287753707
3 −5.7469045658 −3.5779433744
2.5 −5.4700821388 −3.4109051746
2 −5.0719624391 −3.1703316413
1.5 −4.4519157903 −2.7947384167
1.0 −3.3626607029 −2.1314940324

−3.3612769b

0.6 −1.7144175621 −1.1143173063
0.5 −1.123070158 −0.742026070

−1.0911718b

0.4 −0.49078398 −0.33460641
0.3 −0.02158 −0.01582

0.076012b

0.29 −0.0056 −0.0042

aReference [22]; breference [6].

Fig. 1. The ground state energies of Li+ in terms of Debye
screening parameter µ along with the Li2+ (1S) thresholds.

3 Ground state of Li+ immersed in Debye
plasmas

For the ground state calculation of Li+ ion we first set
ω = 1 in equation (2). To obtain the ground state energies
of plasma-embedded Li+ ion, we first obtain the solution
of HΨ = EΨ, where E < 0 in the framework of Rayleigh-
Ritz variational principle. The optimum values of the non-
linear variational parameters αi, βi and γi are selected
form the quasi-random process [21] in equation (3) to
achieve a minimum energy for each screening parame-
ter. We have estimated the ground 1s2 1S state of Li+
in plasmas for different Debye lengths and the results are
presented in Table 1 for different Debye lengths, D and in
Figure 1 as functions of Debye screening parameters, µ. In
the unscreened case our results compare well with the best
results in the literature [22]. For the screened cases, our
calculated ground state energy values are lower than the
reported results of Saha et al. [6]. A comparison is made
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Fig. 2. The stabilization diagram of 2ln′l′

(2 ≤ n′ ≤ 5) 1P◦ resonances in (a) and (b)
along with the fittings (solid line) of the
calculated density of states (circles) for the
2s2p+

1P◦ state in (c) and the 2s3p− 1P◦

state in (d) of Li+ in plasmas for D = 20.

in Table 1. In Table 1 and Figure 1, we also present the
Li2+(1S) threshold energies. The Li2+ (1S) and Li2+ (2S)
threshold energies have been calculated by diagonalizing
the standard Slater-type orbitals and our results compare
well with the available results in the literature [23].

It is clear from Table 1 and Figure 1 that the ground
state energies of Li+ in plasmas for different shielding pa-
rameters are very close to the Li2+ (1S) threshold ener-
gies with the increase of plasma strength i.e., increase of
the Debye screening parameter µ. Our final results are ob-
tained using 600-term basis functions (2), but we have also
tested that the ground state energies produce the same ac-
curacy as presented in Table 1 using 700-term basis func-
tions.

4 The 1,3P◦ resonance states of Li+ immersed
in Debye plasmas

To calculate 1,3P◦ resonances using stabilization
method [18–20], we compute the energy levels E(ω)
for different Debye lengths by diagonalizing the Hamil-
tonian (1) with basis function (2) using the appropriate
choice of the non-linear parameters αi, βi, γi which yield
the best bound 1,3P◦ states energies and the varying
scaling factor ω in the range of 0.3–1.0 with a mesh size
0.001. We then construct the stabilization diagrams (as
shown in Figs. 2a and 2b) by plotting E(ω) versus ω.
The stabilized or slowly varying energy levels appear
in the stabilization plateau indicates the position of
the resonance at an energy E. The details of successful
applications of this simple and powerful method are
available in the works of Ho and co-workers ([9,12,18–20]
and references therein). Varying the Debye length D from
infinity to small values, different resonance parameters

(energies and widths) are obtained for various Debye
lengths.

To extract the resonance energy Er and the resonance
width Γ for a particular resonance, we calculate the den-
sity of resonance states for a single energy level using the
formula [19,20],

ρn(E) =
∣
∣
∣
∣
En(ωi+1) − En(ωi−1)

ωi+1 − ωi−1

∣
∣
∣
∣

−1

E=En(ωi)

, (4)

where the index i is the ith varied ω value, i.e., ωi and
the index n is for the nth resonance. Also in equation (4),
ωi−1 and ωi+1 are respectively the (i− 1)th and (i + 1)th
varied ω values next to ωi. After calculating the density of
resonance states ρn(E) using formula (4), we fit it to the
following Lorentzian form that yields resonance energy Er

and a total width Γ , with

ρn(E) = y0 +
A

π

(Γ/2)
(E − Er)2 + (Γ/2)2

, (5)

where y0 is the baseline offset, A is the total area under
the curve, Er is the center of the peak, and Γ denotes
the full width of the peak of the curve at half height. We
should mention here that equation (4) is a modification of
the original formula proposed by Mandelshtam et al. [18]
in which an averaged form of the density of resonance
states was reported. In our earlier works ([12,19,20] and
references therein) and in this work, instead of using the
averaging formula, we use equation (4) to calculate the
density of states for each energy level in the stabilization
plateau. The calculated density of states is then fitted to
equation (5), and the one that gives the best fit (with the
least chi-square and with the best value of the square of
the correlation coefficient) to the Lorentzian form is con-
sidered as the desired results for that particular resonance.
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Table 2. The 1P◦ resonance energies (Er in a.u.) in plasmas for various Debye lengths.

D 2s2p+
1P◦(1) 2s3p+

1P◦(3) 2s4p+
1P◦(6) 2s5p+

1P◦(9) Li2+ (2S)

∞ −1.757556 −1.361487 −1.255444 −1.2073 −1.1250000000
−1.75756a −1.36143a

100 −1.708035 −1.312331 −1.206770 −1.1587 −1.0952976996
50 −1.659457 −1.264807 −1.160592 −1.1145 −1.0661818501
40 −1.635515 −1.241636 −1.138377 −1.0933 −1.0518397912
35 −1.618554 −1.225319 −1.122851 −1.0786 −1.0416823893
30 −1.596119 −1.203863 −1.102602 −1.0596 −1.0282508009
25 −1.565052 −1.174386 −1.075018 −1.0338 −1.0096586282
20 −1.519189 −1.131373 −1.035312 −0.9975 −0.9822274203
15 −1.444676 −1.062771 −0.973329 −0.942 −0.9377005540
10 −1.302622 −0.936486 −0.8636 −0.8529472079
7 −1.132966 −0.793889 −0.7519442118
5 −0.928064 −0.63538 −0.6302120452
4 −0.767523 −0.5349233591
3 −0.536306 −0.3973939799
2.5 −0.382279 −0.3049246036
2 −0.201453 −0.1926416821

D 2s3p− 1P◦(2) 2s4p− 1P◦(5) 2s5p− 1P◦(8) 2p3d 1P◦(4) 2p4d 1P◦(7)

∞ −1.430517 −1.282427 −1.22085 −1.325190 −1.24072
−1.4305175a −1.325188a

100 −1.381233 −1.233582 −1.17256 −1.276035 −1.19209
50 −1.333346 −1.186933 −1.12742 −1.228519 −1.14603
40 −1.309911 −1.164387 −1.10592 −1.205351 −1.12391
35 −1.293375 −1.148587 −1.09098 −1.189039 −1.10845
30 −1.271586 −1.127907 −1.07156 −1.167588 −1.08828
25 −1.241574 −1.099674 −1.04531 −1.138121 −1.06086
20 −1.197608 −1.058842 −1.0078 −1.095127 −1.02145
15 −1.127051 −0.994618 −0.9505 −1.026576 −0.9601
10 −0.995623 −0.87934 −0.900562 −0.8531
7 −0.844344 −0.7538 −0.760010
5 −0.671147
4 −0.544992

aReference [25].

Here the scaling factor ω acts as the reciprocal range of
the “soft” wall [19,20].

The stabilization plots in Figures 2a and 2b show
stabilization characteristic near energies Er ≈ −1.52,
−1.20, −1.13, −1.10, −1.06, −1.03, −1.02, −1.01 and
−1.00 a.u., respectively, for the 1P◦ states. The stabi-
lization diagrams in Figures 2a and 2b are correspond-
ing to D = 20 for the 2s2p+, 2s3p−, 2s3p+, 2p3d, 2s4p−,
2s4p+, 2p4d, 2s5p−, 2s5p+

1P◦ resonance states respec-
tively. In the next step of the stabilization method, we
calculate the density of states using the formula (4) for
the stabilized portions of each energy level for a particu-
lar resonance state (e.g. 2s2p+) and then the calculated
density of states are fitted to the formula (5). Figures 2c
and 2d show the density of resonance states correspond-
ing to the energy levels in the stabilization plots shown in
Figures 2a and 2b respectively for the 2s2p+ and 2s3p−
1P◦ states. From the fits 2c and 2d, we obtain the reso-
nances parameters (Er, Γ ) as (−1.519189, 2.179 × 10−3)
a.u. and (−1.197608, 5.229×10−6) a.u., respectively. Sim-
ilarly, we calculate several 1,3P◦ resonances for various
Debye lengths D ranging from infinity to small values (up
to 1.7).

Our results for the resonance energy Er and width
Γ are presented in Tables 2–6 and Figures 3, 4; and

they are calculated using the 600-term wave functions
of equation (2). For the unscreened case, our resonance
parameters for the 1,3P◦ states are fairly comparable
with the reported results of other theoretical calcula-
tions ([2,24,25], references therein), as shown in Tables 2–
6 except for the resonance width of the 2s4p+

1P◦ state.
In Tables 5 and 6, we have made a comparison of our
estimated 1,3P◦ resonance parameters (Er, Γ ) in eV for
the unscreened case, measured from the ground state en-
ergies of Li+ with the available experimental results. The
experimental 1P◦ resonance parameters(Er, Γ ) (reported
by Scully et al. [2], and by Mosiner et al. [26], compare well
with our calculations (see Tabs. 5 and 6). The resonance
width for the 2s4p+

1P◦ state is higher than the reported
theoretical and experimental results. The reduced a.u. for
Li is used for energy conversion (1a.u. = 27.20952 eV) in
Tables 5, 6.

All together, we have calculated the resonance widths
for the 2s2p+, 2s3p+, 2s4p+, 2s3p−, 2p3d 1P◦ states and
the 2s2p+, 2s3p+, 2s4p+, 2s3p− 3P◦ states correspond-
ing to the resonance energies given in Tables 2, 3. For
the singlet and triplet state cases, the widths for some
of the states are not reported, as these widths are very
narrow. From Figures 3, 4 and Tables 2–4, it is clear
that the resonance energies increase and ultimately are



S. Kar and Y.K. Ho: The ground state and doubly-excited 1,3P◦ states of hot-dense plasma-embedded Li+ ions 5

Table 3. The 3P◦ resonance energies (Er in a.u.) in plasmas for various Debye lengths.

D 2s2p+
3P◦(1) 2s3p+

3P◦(2) 2s4p+
3P◦(5) 2s5p+

3P◦(8) Li2+ (2S)

∞ −1.878179 −1.406275 −1.274755 −1.2174 −1.1250000000
−1.878185a −1.40627a

100 −1.828614 −1.357027 −1.225952 −1.1692 −1.0952976996
50 −1.779908 −1.309244 −1.179420 −1.1242 −1.0661818501
40 −1.755873 −1.285885 −1.156957 −1.1028 −1.0518397912
35 −1.738833 −1.269413 −1.141227 −1.0878 −1.0416823893
30 −1.716278 −1.247722 −1.120650 −1.0686 −1.0282508009
25 −1.685016 −1.217869 −1.092584 −1.0426 −1.0096586282
20 −1.638800 −1.174187 −1.052045 −1.0049 −0.9822274203
15 −1.563554 −1.104220 −0.988415 −0.9487 −0.9377005540
10 −1.419529 −0.974367 −0.874709 −0.8529472079
7 −1.246486 −0.825750 −0.75309 −0.7519442118
5 −1.035815 −0.657438 −0.6302120452
4 −0.869230 −0.538273 −0.5349233591
3 −0.626136 −0.3973939799
2.5 −0.461062 −0.3049246036
2 −0.259976 −0.1926416821
1.8 −0.171969 −0.1428292398
1.7 −0.12843 −0.1174318560

D 2s3p− 3P◦(3) 2s4p− 3P◦(6) 2s5p− 3P◦(9) 2p3d 3P◦(4) 2p4d 3P◦(7)

∞ −1.398514 −1.26855 −1.2136 −1.33621 −1.24591
−1.398514a −1.33621a

100 −1.349269 −1.21977 −1.1654 −1.28702 −1.19724
50 −1.301495 −1.17330 −1.1205 −1.23939 −1.15107
40 −1.278142 −1.15089 −1.0991 −1.21614 −1.12885
35 −1.261674 −1.13520 −1.0843 −1.19976 −1.11333
30 −1.239988 −1.11469 −1.0651 −1.17821 −1.09306
25 −1.210141 −1.08670 −1.0391 −1.14858 −1.06547
20 −1.166469 −1.04632 −1.0021 −1.10530 −1.02577
15 −1.096518 −0.98302 −0.9447 −1.03615 −0.96384
10 −0.966743 −0.87012 −0.90856 −0.8548
7 −0.818480 −0.76479
5 −0.650335

aReference [24].

Table 4. The 1,3P◦ resonance widths (Γ in a.u.) of Li+ under Debye screening.

D 2s2p+ 2s3p+ 2s4p+ 2s3p− 2p3d 2s2p+ 2s3p+ 2s4p+ 2s3p−
1P◦(1) 1P◦(3) 1P◦(6) 1P◦(2) 1P◦(4) 3P◦(1) 3P◦(2) 3P◦(5) 3P◦(3)
[10−3] [10−4] [10−4] [10−6] [10−6] [10−4] [10−4] [10−5] [10−6]

∞ 2.212 6.997 3.66 5.86 5.95 3.151 1.106 4.049 3.38
2.19a 6.6a 6.5a 4.0a 3.12a 1.05a

100 2.211 6.976 3.63 5.82 5.75 3.150 1.103 4.000 3.44
50 2.207 6.917 3.58 5.73 5.21 3.148 1.095 3.868 3.60
40 2.204 6.875 3.54 5.67 4.85 3.146 1.090 3.777 3.71
35 2.201 6.841 3.50 5.62 4.55 3.145 1.085 3.704 3.80
30 2.197 6.788 2.61 5.54 4.12 3.143 1.078 3.595 3.93

25 2.191 6.703 2.54 5.43 3.48 3.140 1.067 3.430 4.12
20 2.179 6.553 2.41 5.23 2.48 3.134 1.048 3.165 4.41
15 2.154 6.246 2.12 4.88 0.964 3.122 1.010 2.714 4.86
10 2.088 5.445 4.22 3.088 0.922 1.417 4.96
7 1.973 4.129 3.82 3.026 0.799
5 1.777 1.98 2.908 0.578
4 1.578 2.776 0.289
3 1.212 2.467

2.5 0.907 2.151
2 0.446 1.562

1.8 1.171
1.7 0.9117

aReference [24].
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Table 5. Comparison of the 1P◦ resonance energies (eV) of Li+ with other theoretical and experimental results.

States Present CRMa CRMb R-matrixc Experimentc Experimentd

2s2p+
1P◦(1) 150.26 150.26 150.28 150.31 150.31 ± 0.03 150.31 ± 0.02

2s3p− 1P◦(2) 159.16 159.16 159.17
2s3p+

1P◦(3) 161.04 161.04 161.05 161.08 161.11 ± 0.03 161.07 ± 0.02
2p3d 1P◦(4) 162.03 162.025 162.04
2s4p− 1P◦(5) 163.19 163.20
2s4p+

1P◦(6) 163.92 163.94 163.97 164.00 ± 0.03 163.95 ± 0.03
2p4d 1P◦(7) 164.32 163,34
2s5p− 1P◦(8) 164.86 164.87
2s5p+

1P◦(9) 165.23 165.23 165.26 165.29 ± 0.03 165.27 ± 0.06
2s2p+

3P◦(1) 146.98 146.98 146.99
2s3p+

3P◦(2) 159.82 159.82 159.83
2s3p− 3P◦(3) 160.03 160.03 160.04
2p3d 3P◦(4) 161.73 161.73 161.74
2s4p+

3P◦(5) 163.40 163.41
2s4p− 3P◦(6) 163.57 163.58
2p4d 3P◦(7) 164.18 164.19
2s5p+

3P◦(8) 164.96 164.97
2s5p− 3P◦(9) 165.06 165.07

aReference [24]; breference [25]; creference [2]; dreference [26].

Table 6. Comparison of the 1P◦ resonance widths (meV) of Li+ with other theoretical and experimental results.

States Present CRMa CRMb R-matrixc Experimentc

2s2p+
1P◦(1) 60.19 59.59 60.08 60.08 57 ± 3

2s3p− 1P◦(2) 0.1594 0.1769 0.1604
2s3p+

1P◦(3) 19.039 17.96 19.02 19.03 21 ± 2

2p3d 1P◦(4) 0.1618 0.1088 0.1605
2s4p+

1P◦(5) 9.959 8.40 8.39 6 ± 2
2s2p+

3P◦(1) 8.574 8.49 8.792
2s3p+

3P◦(2) 3.009 2.86 3.093
2s3p− 3P◦(3) 0.092 0.09274
2s4p+

3P◦(5) 1.102 1.238

aReference [24]; breference [25]; creference [2].

Fig. 3. The 2ln′l′ (2 ≤ n′ ≤ 5) 1,3P◦ resonance energies in terms of the screening parameter µ along with the Li+ (2S) threshold
energies.
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Fig. 4. The 2ln′l′ (2 ≤ n′ ≤ 4) 1,3P◦ res-
onance widths corresponding to resonance
energies in Figure 3 as functions of the
Debye screening parameter µ.

Table 7. The wavelengths (in Å) for the absorption 1P◦ resonances of Li+ in plasmas.

D 2s2p+ 2s3p+ 2s4p+ 2s5p+ 2s3p− 2s4p− 2s5p− 2p3d 2p4d
1P◦(1) 1P◦(3) 1P◦(6) 1P◦(9) 1P◦(2) 1P◦(5) 1P◦(8) 1P◦(4) 1P◦(7)

∞ 82.507 76.985 75.630 75.03 77.894 75.971 75.20 76.516 75.446
100 82.512 76.995 75.645 75.05 77.902 75.984 75.22 76.525 75.462
50 82.528 77.022 75.689 75.11 77.925 76.021 75.27 76.552 75.506
30 82.564 77.085 75.786 75.25 77.978 76.107 75.40 76.615 75.606
20 82.633 77.203 75.967 75.49 78.080 76.266 75.62 76.732 75.792
15 82.729 77.364 76.207 75.8 78.218 76.479 75.92 76.892 76.04
10 82.995 77.806 76.85 78.600 77.054 77.332 76.71
7 83.478 78.595 79.285 78.055 78.139
5 84.358 80.021 80.527
4 85.344 81.929
3 87.444

2.5 89.554
2 93.549

1.8 96.5

very close to the Li+(2S) threshold with increasing plasma
strength, i.e., with increasing value of the screening pa-
rameter µ, and all the resonance widths decrease with
the increase of plasma strength except for the 2s3p− 3P◦
states. The 2s3p− 3P◦ resonance width increases with in-
creasing plasma strength. All the situations have been dis-
cussed in our earlier works. From Figure 4c and Table 4,
it is apparent that the resonance width for the 2s4p+

1P◦
state fall down slightly near D = 30. It may due to some
numerical uncertainties during the fitting procedure us-
ing equation (5), or it may due to the finite basis sets we
have used here. More extensive calculations in the future
may help to clarify the sudden drop of the width for the
2s4p+

1P◦ state when µ is around 1/30. In Tables 2–4,
the number in the first parenthesis indicates the order of
appearance of resonance parameters and in Table 4, the
exponent like 10−x in the square bracket indicates the en-
try of each column should be multiplied by 10−x.

5 Transition wavelengths

It is well-known that at energies close to resonance, the
photo-ionization process for a positive ion Q+ occurs as
follows

�ν + Q+(i) → [Q+]∗∗ → Q++(f) + e−, (6)

where [Q+]∗∗ is an intermediate resonance state and i, f
denote the initial and final states, respectively. The inter-
ference between the direct and the intermediate mecha-
nisms in equation (6) yields the absorption profile. In the
He-like Li+ ion, the strongest process occurs for the final
state 2snp(n ≥ 2) 1P◦ and the initial state 1s2 1S.

Finally in Table 7 and Figure 5, we present the tran-
sition wavelengths λ(Å)of the 1P◦ absorption resonances
from the ground state of the plasma-embedded Li+ ion
with various Debye lengths.
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Fig. 5. The wavelengths for the absorption 1P◦ resonances for the 2snp+ in (a), the 2snp− in (b), the 2pnd in (c) of Li+ in
plasmas for different screening parameters.

To obtain the wavelengths, we first calculate the en-
ergy differences in atomic units between each of the auto-
ionization 2ln′l′ (n′ ≥ 2) 1P◦ states and the ground 1s2 1S
state of the Li+ ion for different Debye lengths. The en-
ergy differences are then converted from atomic units
to Angstrom (Å) by using the standard conversion unit
(1 atomic unit of energy corresponds to a wavelength of
455.633 Å). Our results show that as the plasma screening
effect increases, the wavelengths for the photo-absorption
from the ground state to the doubly excited resonance
states are red-shifted to have longer wavelengths (see
Fig. 5).

6 Summary and conclusions

In view of the recent experimental measurement on the
doubly excited resonances in photo-ionization spectrum of
Li+ [2], we have made a first investigation on the 2snp+

(3 ≤ n ≤ 5), 2snp− (3 ≤ n ≤ 5), 2pnd (n = 3, 4) 1,3P◦
resonance states of the Li+ ion embedded in Debye plasma
environments. We have also calculated the ground 1s2 1S
state energies of the Li+ ion in plasmas. The ground state
energies and the resonance parameters (Er , Γ ) for various
Debye lengths ranging from infinity (free ion, no screen-
ing) to small values (up to 1.7) have been calculated. Our
ground state energies obtained for different screening pa-
rameters are lower than those reported in the literature.
We have also estimated, for the first time, the wavelengths
of absorption resonances for the Li+ ion in plasmas un-
der various Debye environments. We have employed the
stabilization method that is a very simple and powerful
practical method to calculate the resonance parameters
(Er, Γ ). Our results will provide useful references to re-
search communities in atomic physics, plasma physics, and
astrophysics.

The work is supported by the National Science Council of
R.O.C.
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